
International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018 639
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Time Complexity Analysis for Termination
Detection Using weighted Protocol

Shreya Verma
Computer Science Department

MS Ramaiah Institute of Technology
Bangalore

shreyaverma27@gmail.com

Sini Anni Alex
Computer Science Department

Assistant professor
MS Ramaiah Institute of Technology

Bangalore
sinialex@msrit.edu

Siddhartha
Computer Science Department

MS Ramaiah Institute of Technology
Bangalore

targetsiddu@gmail.com

Sadhvik Reddy

Computer Science Department
MS Ramaiah Institute of Technology

Bangalore
sadhvikreddy1997@gmail.com

Abstract—Termination detection in the study of distributed
systems is a popular topic for research and a major problem of
study. It involves checking if all the nodes have successfully
terminated their execution. There are a large number of
methods to implement termination detection. In this paper
termination detection using weighted protocol is used that is
described in Imran Riaz Hasrat, Muhammad Atif, “Formal
Specification and Analysis of Termination Detection by
Weight-throwing Protocol”,IJACSA Vol. 9, No. 4, 2018. We
will apply time complexity technique to find out its measure in
the algorithm used in the paper and also determine how to
make the time complexity better. Our results show the time
complexity of the proposed algorithm along with measures to
improvise it in future.

Keywords—Weight throwing protocol, Termination Detection,
Time complexity, Model checking

I. INTRODUCTION
Termination detection is an essential area of concern in

the distributed systems. In distributed system, process state
formulates the basis for termination detection. There are two
possible states of a process i.e, alive state or dead state. An
alive state means that the process is still executing its
computation or activity whereas, a dead state means the
computation or activity has ended or terminated. The
synonym for dead state is passive and for alive state is
active. In the beginning all the process are in the active state.
Processes can take the following actions:
•Only an active state process will send basic messages to all
other processes.
• Any process may enter passive state at any instance.
•On arrival of basic messages, passive process will become
active again.

It is very important for the previous phase of
computation to terminate in order for the other phase to
begin. In multiphase algorithms [2], one phase always
depends on completion of another phase. A major flaw
called deadlock is also caused due to improper termination
detection[3]. different termination detection algorithms have
been proposed by many researchers as described in [7]–[15].
In the referred paper, formal model is used based on
mathematical tools and a software called UPPAL. The

formal verification of the termination detection algorithm
using weight throwing is done using this software as a
model checker. UPPAAL has a simulator that was used in
the paper to develop the model[19]. The verifier present in
UPPAAL is equipped with ability to keep track of property
fails by creating traces of action sequences. To investigate
this situation, simulator replays the action sequences.

A. Our contribution
In the paper, two models have been devised. Model 1, is

a fault free system in which only two types of messages are
sent across the communication channel i.e, basic message
and control message. The basic messages are sent from one
process to another. These messages are sent to
MessageBuffer first, until the receiver is ready to receive
them. Control messages are sent from MessageBuffer to the
leader. In Model 2, a fault system is taken into consideration
hence, there are two types of messages sent across the
communication channel along with the previously two
mentioned i.e, failRequest and failReply. We will formally
devise the time complexities of both the models and
compare and contrast them. We present a formal
specification to reduce the time complexity of both the
models. We also present an analyzed summary of both the
models in the paper.

B. Road Map
The rest of this paper is organized as follows. In Section

2, we describe the previous work on termination detection
using weight throwing protocol using two models. In
Section 3, we describe both the system models assumed by
the referred paper. In Section 4, we state the time
complexity meaning. In Section 5, we deduce the time
complexity of Model 1. In Section 6, we deduce the time
complexity of Model 2. In section 7 both the time
complexities are compared and methods to improve them
are mentioned. Section 8, circumferences the results and the
paper paper is concluded in Section 8.

II. RELATED WORK
In the early times the termination detection algorithm was
adopted only for systems which had a fixed number of nodes
but, the paper analyzes the existence of systems in which

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018 640
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

nodes can be removed or added dynamically in an
asynchronous system. The system also finds out the
complexity of the system and helped our paper to find the
latency and complexity.

In this paper in order to reduce latency and complexity, a
tree based algorithm is used for dynamic, asynchronous vast
systems proposed by Dijkstra and Scholten
in [1]. The difference is this paper was that the nodes could
leave or join the tree even during the computation. This
paper gave us an idea on how to reduce complexity.

This paper helped analyze termination detection for

global snapshots. This paper was referenced in order to
determine if the complexity can be reduced using local
snapshot or global snapshot. The referred paper uses
spanning tree algorithm to take a global snapshot such that
at least one node in the system is aware if all the other nodes
have terminated or not. In the system the underlying
structure used is such that the labels or vertices and edges is
modified. All the relabellings are local which provide an
abstraction for distributed computing. This paper also
proved local termination is not stable.

The deadlock paper was referenced in order to reduce
time complexity by taking into consideration the occurrence
of deadlock. In this paper, deadlock detection and recovery
methods were portrayed. As the biggest flaw in distributed
systems i.e, deadlock occurrence is identified, the latency
and time complexity can be automatically reduced. The
following paper also determined detection for global
snapshots.

III. SYSTEM MODEL
The referred paper utilizes two models in order to devise

the theory of weighted protocol being invalid in a few cases.
There are two models. The first model is fault-free and the
second model is with faults. The models are described in the
sections following. The protocol has used the following
channels mentioned below. To perform the functionality in
termination detection of a distributed system which is fault-
free, hand-shake protocol in the channels are used. The
functioning of the channels is described as follows:-

A. Model 1 (fault-free)
 1. BasicMessageS(BMS) :The channel is necessary as this
this channel is used for the BMS communications. BMS is
sent to BufferMessage which stores all the messages until
the receiver is ready for receiving.

 2. BasicMessageR(BMR) :This channel is used to move
messages from BufferMessage to the process receiving
messages.

 3. ControlMessageS(CMS) :This channel is used by the
system to send CMS to BufferMessage.

 4. ControlMessageR(CMR) :This channel is used to move
stored CMR from BufferMessage to a leader.

B. Explanation of model
● There are parallel processes running which get

activated through the channels discussed in the
previous section. Hence, the activation process

comprises of four processes, sending BMS,
receiving BMR, sending CMS, receiving CMR.
The complete termination, functionality between
active and A1 (process) is explained.

● A BMS is sent to the BufferMessage(which stores
the data till the time the receiver is ready to receive
it such that the weights are divided into equal
halves. One weight constitutes the numerator and
other, the denominator in order to prevent floating
point errors. The weights when combined together
form a single weight.

● When the process moves from A1 to active,
updateOut() (called when basic or control message
is being sent) function is called which updates
Out_arr[] (stores all the messages for outgoing
transit) for recording weights.

● The first weight(w) i.e, w[1] is multiplied with two
because multiplying the denominator with two will
divide the overall value by two.

● When the action takes place from active to
A2(process) , a basicMessageR is sent. Then the
function call for updateIn() (call when BMR or
CMR is accepted) happens which updates In_arr[]
(stores all the messages for incoming transit) for
recording weights.

● In the next step, w[0] and w[1] is equated to 0 in
order to put the complete weight to the leader.

● A message transfer from idle(no messages received
or sent) to A4(process) is similar to busy(when
messages are sent or received
) to A2 except that CMR is the activation channel.

● The leader aggregates all the weights from all the
busy processes through CMR. If the weight/cost is
equted to the predefined weight which is announces
at the start then the leader establishes termination.

C. Model 2 (with faults)
Other Channels (that are not in mentioned in model 1)

are

1)Fail Report : tells other processes about it's failed status &
process receives status of failed processes using this
channel .

2)Fail Request & Fail Request R : sends snapshots to
message buffer and from there to termination process .

3)Fail Reply & Fail Reply R : snapshot reply to snap buffer
then to recipient termination process .

D. Explanation of model
Declarations :

1. FIn[] and FOut[] : arrays store all the weights
entering in and exiting out of processes .

2. FI FO Diff[]: array stores the difference between all
the weights entering in and exiting out of failed
process .

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018 641
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

3. S[]: stores ids of termination process of all
instances

4. F[] : records unsucessful processes known to every
other process.

5. Ftemp[] : actual record of failed processes .

There are ten communicative choices in which four
are same as the model 1 and others are :

● Snapshot of request message that is sent
and received .

● Reply message

● Send & Receive final report message .

● Send & Receive final report message .

We discuss about actions between F1 to F4 :

● F1 is a FR(fail Report) Channel which detects
unsucessful process and adds to F[] and Flush[] .
The Leader() function is called to know current
leader , if it is not declared leader then it becomes
active and if it’s a leader then it reaches Snapstate
,until the receiver is ready the snapshot is stored in
snapbuffer and once it is ready then snapshot is sent
from snapbuffer .

● In F2 , process receives snapshot request from snap
buffer in fail Request R and sends snap shot reply
to snap buffer for leader in fail Reply channel . F[]
is updated for maintaining all failed processes .

● In F3 , leader gets the stored snapshot from snap
buffer in fail Reply R channel. Where the
difference between F[] of receiver and sender is
calculated . If difference between them is more than
zero then snapshot is inconsistant . If snapshot is
processed then process is sent to active state or it’s
sent to snap state .

● In F4 ,similar to F1 detects failed process . This
ensures that the progress of the snapshot is not
terminated and the failed process is added into F[]
and Flush[]. Also process is removed from S[] if
it’s still not empty then snapshot is taken.

● At failure, process updates FTemp[] into an array
and gets to a fail state , Fail Report informs all the
other process that it is failed .

IV. ANALYSIS OF TIME COMPLEXITY
We compare time complexity of termination detection

algorithm in two models which are fault-free and faulty
system.

Time complexity is representation of time taken to
compute any algorithm. Time complexity of any algorithm
can be found easily. Time complexity can be used to its
utmost efficiency in case of recursive functions. Time
complexity of declarations are minimal as the are executed
only once per compilation. However loops, recursive
functions, goto statements and logical jump statements take

up majority of time in computation. However, single
application of these statements wont take up much of the
computation time. But combined with multiple statements of
control statements can result in costly time complexity. "big
O notation" is how typically time complexity is measured.
O(Nn) is the representation of Time complexity, where "N"
is the number of inputs and "n" is number of looping/logical
expressions.

In paper which we choose which is Formal Specification
and Analysis of Termination. Detection by Weight-throwing
Protocol by Imran Riaz Hasrat, Muhammad Atif and
Muhammad Naeem. There are two methods which are
produced, one is which detects termination in fault-free
system which is model 1 and another is faulty system which
is referred as model 2.

 V. TIME COMPLEXITY OF MODEL 1 (fault-free)

 For N number of messages sent in a Distributed systems,
This distributed algorithm calls a updateOut() function (O
(G(n))), Which updates Out_arr[] which takes O(N) for Best
case and O (N2 (G(N))) plus O(N) for function call and
Out_arr[] respectively.

For N number of messages received in a Distributed
systems, This distributed algorithm calls a updateIn()
function (O (G(n))), Which updates In_arr[] which takes
O(N) for Best case and O (N2 (G(N))) plus O(N) for
function call and Out_arr[] respectively.

The message Buffer is used to to store messages until the
receiver is free to receive the message. For this to happen,
The Algorithm uses function called updateBBuffer() which
keeps record of all incoming messages which takes same
time as earlier mentioned update function. This however is
used for only incoming messages and finally there is control
buffer function for all the control messages which calls
function updateCBuffer().

So, Time complexity of the Model 1 can be summarized
as Follows:

For N messages Sent:

Best Case: O(N + G(N)).

Worst Case: O(N(1+N G(N)))

For N messages Received:

Best Case: O(2(N + G(N))).

Worst Case: O(2N(1+N G(N)))

For N Control messages received:

Best Case: O(G(N-1))

Worst Case: O((N-1)2 G(N-1))

VI. TIME COMPLEXITY OF MODEL 2 (fault)

Faulty system follows same procedure as the Fault-less
system. So, The time complexity of Model 2 is build on time
complexity of model 1. However, there are many functions

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018 642
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

which are called according to occurrence of fault in
distributed system. For N failures in the distributed system,
there is an Update of arrays F[] and Flush[] which takes up
O(N) time for array. Assuming leader is chosen once per
failure which takes up O(N(G(N))). The function calSN()
calls the calcDiff() function. for every process id,The
calcDiff() function calls isAvailable() function. If the
process is available in array of F[], TRUE value is returned.
This rules out the necessity to send snapshot Request
Message for that specific process.this can be approximately
translate to O(log(N))., Leader process is followed by
AddIn() function. In AddIn() function, For all failed
processes known to current leader, Total incoming weights
are computed. This Function call adds up to O(NG(N)) and
Incoming weights are added with complexity of O(N).
Similarly, In AddOut() function, For all failed processes
known to current leader, Total Outgoing weights are
computed. This Function call adds up to O(NG(N)) and
Outgoing weights are added with complexity of O(N) and
To keep track difference between incoming and outgoing
weights, A function FIin_FOut_Diff() is called. This
function uses two array namely FIn[] and FOut[] which
stores incoming and outgoing weights respectively. The
difference is moved to FI_FO_Diff[].

 Hence calculating time complexity will be addition of
updation of three array access and function call which
constitutes to O(3N+N(G(N))). This is followed by
constants checks of snapshots requests and access of
SnapBuffer process. When leader sends a snapshot request
message, SnapBuffer has to store it. This Snapshot message
further forwarded to termination process. For which,
Termination process sends a snapshot reply message which
is stored by SnapBuffer. This stored snapshot reply message
is sent to leader.

Sending and receiving snapshots happens with linear
time but time constraint here is indefinite waiting time for
the receivers to be able to send the snapshot and clear the
buffer.

So, Time complexity of the Model 2 can be summarized
as Follows:

For N messages Sent (Same as Model 1) :

Best Case: O(N + G(N)).

Worst Case: O(N(1+N G(N)))

For N messages Received (Same as Model 1) :

Best Case: O(2(N + G(N))).

Worst Case: O(2N(1+N G(N)))

For N Control messages received (Same as Model 1) :

Best Case: O(G(N-1))

Worst Case: O((N-1)2 G(N-1))

Leader Election :

Best Case: O(2N G(N))

Worst Case: O(2N(N G(N)))

Local Declarations:

Best Case: O(log(N))

Worst Case: O(N2 log(N))

Incoming Weights:

Best Case: O(3N+N(G(N)))

Worst Case: O(3N+N(N G(N)))

Outgoing Weights:

Best Case: O(3N+N(G(N)))

Worst Case: O(3N+N(N G(N)))

VII. TIME COMPLEXITY COMPARISON OF BOTH

THE MODELS

Table given below explains the time comparison
between model one and model two:

Conditions Computational time
for model 1

Computational time
for model 2

Requirement 1 57600m23.345s 06.307s**

Invariant 1 7210m34.453s 7215m33.873s

Invariant 2 7206m12.560s 11520m21.212s

Invariant 3 7002m19.350s 20.353s**

**Conditions NOT SATISFIED by the model.

For Model 1:
Total Number of Termination Process Instances = 3

Total Weight of the System = 1
Weight of Each Instance = ⅓

For Model 2:
Total Number of Termination Process Instances = 4

Total Weight of the System = 1
Weight of Each Instance = 1/4

Requirement 1: System is terminated if and only if all
the weights in the system are collected successfully.So,
Deadlock in the system should only occur when the leader is
in announce state and all the other processes are kept in
passive state.

Invariant 1: This Invariant is applied for all the processes
in the system except Leader process. Invariant 1 says that a
process should be in passive state, only if its weight is zero
and Vice versa.

Invariant 2: Invariant 2 is about message passing where
all the processes are allowed to send basic messages to each

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 12, December-2018 643
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

other and control messages to leader. A Non-Zero weight is
attached before sending control and basic messages.

Invariant 3: The third invariant states that weights of
current weight and initial weight should be equal along with
sum of weights of Incoming and outgoing messages should
be equal as well.

VIII. CONCLUSION

.We have presented with the time complexity of major
operations in termination detection algorithm. For the
simplicity, We have only considered Major Operations of
distributed systems rather than computations and
declarations. These declarations run only once which takes
O(1) time. All the Big-Oh notations are only rough estimates
as the execution of algorithms in distributed systems are
variable. In this paper, there is a fault-free system and faulty
system which are referred as model 1 and model 2
respectively.
In case of terminal detection, both the models are same if No
fault occurs, however, non occurrence of fault is not
practical. So model 2 is more applicable for applied
distributed systems even though model 1 has better time
complexity.

 References

[1] Formal Speocofication and analysis of termination detection using
weighted protocol , vol9,4,2018
[2] K. M. Chandy and J. Misra, “Asynchronous distributed simulation
via a sequence of parallel computations,” Commun. ACM, vol. 24, no.

4,pp. 198–206, Apr. 1981. [Online]. Available:
http://doi.acm.org/10.1145/358598.358613

[3] K. M. Chandy, J. Misra, and L. M. Haas, “Distributed deadlock
detection,” ACM Trans. Comput. Syst., vol. 1, no. 2, pp. 144–156,

May1983.[Online].Available:
http://doi.acm.org/10.1145/357360.357365

[4] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Commun. ACM,vol.24, no. 4,
pp. 198–206, Apr. 1981. [Online].

[5] Y. Tseng, “Detecting termination by weight-throwing in a faulty
distributed system,” J. Parallel Distrib. Comput., vol. 25, no. 1, pp. 7–

15,1995. [Online]. Available: https://doi.org/10.1006/jpdc.1995.1025
[6] X. Wang and J. Mayo, “A general model for detecting distributed
 termination in dynamic systems,” in 18th International Parallel and
 Distributed Processing Symposium, 2004. Proceedings., April 2004.
[7] G. Tel and F. Mattern, “The derivation of distributed termination
detection algorithms from garbage collection schemes,” ACM Trans.
Program. Lang. Syst., vol. 15, no. 1, pp. 1–35, Jan. 1993.

[Online].Available: http://doi.acm.org/10.1145/151646.151647
[8] F. Mattern, H. Mehl, A. A. Schoone, and G. Tel, “Global virtual
time approximation with distributed termination detection

algorithms,”Tech.Rep., 1991.
[9] S. Chandrasekaran and S. Venkatesan, “A message-optimal
algorithm for distributed termination detection,” J. Parallel Distrib.

Comput.,vol. 8, no. 3, pp. 245–252, mar 1990. [Online]. Available:
http://dx.doi.org/10.1016/0743-7315(90)90099-B [12] J. Pang, Analysis of

a Security Protocol in µCRL, C. George and H. Miao, Eds.Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002.

[10] termination detection algorithm,” Journal of Parallel and
Distributed Computing, vol. 67, no. 10, pp. 1047–1066, 2007.

[Online].Available
http://www.sciencedirect.com/science/article/pii/S0743731507000998

IJSER

http://www.ijser.org/

	I. INTRODUCTION
	A. Our contribution
	B. Road Map

	II. RELATED WORK
	III. SYSTEM MODEL
	A. Model 1 (fault-free)
	B. Explanation of model
	C. Model 2 (with faults)
	D. Explanation of model

	IV. ANALYSIS OF TIME COMPLEXITY

